Quantitative true elemental imaging based on the PIXEKLM program package and the nuclear microprobe

I. Uzonyi, Gy. Szabó and Á. Z. Kiss

Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P. O. Box 51, Hungary

Production of true elemental images using PIXE and the scanning nuclear microprobe is a complex and still challenging problem. Ryan and his co-workers were the first who developed a software package (GeoPIXE) for quantitative mapping, which has been the only available in this field. It is based on a rapid matrix transform method called Dynamic Analysis which directly converts the spectrum vector (**S**) into the concentration vector (**C**) in terms of the matrix Γ : **C**=Q⁻¹ Γ **S** (Q is the accumulated charge). This linear equation system allows to produce true elemental images $M_k(x,y)$ by incrementing each image k (at beam position x,y) by Γ_{ki} for each event at channel i.

Based on our Oxford-type scanning nuclear microprobe facility, a few years ago we realized a special μ PIXE set-up consisting of an ultra thin windowed (UTW) and a Be windowed Si(Li) X-ray detector. Then with the modification of our PIXEKLM program package we solved the efficiency calibration of the UTW detector and quantitative analysis down to C-K_{α} line.

The aim of this paper is to present our new software package developed for true elemental imaging. It is based on the above-mentioned ideas and system allowing off-line data processing from list mode files. The Γ matrix is calculated for any sample composition and thickness by the PIXEKLM program package from C to U for K, L and M characteristic X-ray lines. The true elemental images are produced by a frame program, which allows advanced image processing and sophisticated multivariate statistical analysis in order to help the interpretation and presentation of concentration data.